Fast, Local, and In-situ Cure Rheology of Photo-processable Polymers using Atomic Force Microscopy

Dr. Callie Fiedler-Higgins National Institute of Standards and Technology

RadTech 2018 • 7 May 2018 contact: callie.higgins@nist.gov

Motivation: Additive Manufacturing

3D Systems and Stratasys Huh, D. Trends in cell biology, **21**(12), 745-754 (2011) Advanced Materials 23.24 (2011) D. Hutmacher et. al,. Trends Biotechnol. **22**, 354–362 (2004) R. B. Wicker et al. (2012) CNC Machined Prototypes Supplier

NIST

MATERIAL MEASUREMENT LABORATORY

3D Printing: Light-induced

Billiet, T. et al. *Biologically Responsive Biomaterials for Tissue Engineering (2013)* Ouyang, Liliang, et al. Advanced Materials 29.8 (2017).

3D Printing: Light-induced

NIS

http://www.directindustry.com/prod/anton-paar/product-16352-1645542.html Andrzejewska, E., & Andrzejewski, M. (1998). Journal of Polymer Science Part A: Polymer Chemistry, 36(4), 665-673.

MATERIAL MEASUREMENT LABORATORY

http://www.directindustry.com/prod/anton-paar/product-16352-1645542.html Andrzejewska, E., & Andrzejewski, M. (1998). Journal of Polymer Science Part A: Polymer Chemistry, 36(4), 665-673.

http://www.directindustry.com/prod/anton-paar/product-16352-1645542.html Andrzejewska, E., & Andrzejewski, M. (1998). Journal of Polymer Science Part A: Polymer Chemistry, 36(4), 665-673.

Atomic Force Microscopy

pm 150

0.00

-150

pm 150

0.00

-150

Atomic Force Microscopy

Dynamic Contact Sensing: Contact Resonance

- Shift in frequency proportional to stiffness
- Viscoelasticity obtained from Q-factor $(f_r/\Delta f_r)$
 - Quantitative evaluation of storage modulus, loss modulus, tan δ via Elastic Beam model
- Fast sensing capability (bandwidth (1 kHz -100 kHz -> 1 ms
 - 10 µs sensing)

Atomic Force Microscopy

Dynamic Contact Sensing: Contact Resonance

- Shift in frequency proportional to stiffness
- Viscoelasticity obtained from Q-factor $(f_r/\Delta f_r)$
 - Quantitative evaluation of storage modulus, loss modulus, tan δ via Elastic Beam model
- Fast sensing capability (bandwidth (1 kHz -100 kHz -> 1 ms
 - 10 µs sensing)

Adapting Current System

Commercial AFM

Adapting Current System

MATERIAL MEASUREMENT LABORATORY

Varied exposure power, constant dose

energy dose (mJ) = power (mW) x exposure time (s)

Varied exposure power, constant dose

energy dose (mJ) = power (mW) x exposure time (s)

Varied exposure power, constant dose : Topography + $tan(\delta)$ image $tan(\delta)$

Exposure spatial dependence : damping (Q) and stiffness (f_0)

In-situ cure: Commercial, liquid AM resin

In-situ cure: Commercial, liquid AM resin

Capturing polymerization event of commercially available resin at the relevant intensities and spatiotemporal resolution

In-situ cure: Commercial, liquid AM resin

NIST

Summary

Acknowledgements

contact: callie.higgins@nist.gov

Dr. Jason Killgore

Dr. Lewis Cox

Dr. Ben Caplins

Thank you! Questions?

